skip to main content


Search for: All records

Creators/Authors contains: "Nouri, Arash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    An experimental study was conducted to compare the performance of an in-house built novel double semi-active damper against a conventional semi-active single damper. Different performance metrics were analyzed, and the performance of the two dampers was evaluated based on these metrics. A Hybrid Skyhook–Groundhook control algorithm was developed and implemented on the variable orifice double damper. The semi-active single damper is governed via two separate control strategies, namely—Skyhook and Groundhook control, respectively. The effectiveness of each algorithm is better understood by adding a normal load on top of the Shock Dyno, thus modifying it to act as a quarter car test rig. The sprung and unsprung acceleration data are collected via the accelerometers mounted on the Shock Dyno through a Data Acquisition System. The results obtained from this experiment provide a strong basis that the semi-active double damper performs better in terms of the comfort cost than that of the commercial semi-active single dampers. 
    more » « less
  2. ABSTRACT Being able to estimate tire/rubber friction is very important to tire engineers, materials developers, and pavement engineers. This is because of the need for estimating forces generated at the contact, optimizing tire and vehicle performance, and estimating tire wear. Efficient models for contact area and interfacial separation are key for accurate prediction of friction coefficient. Based on the contact mechanics and surface roughness, various models were developed that can predict real area of contact and penetration depth/interfacial separation. In the present work, we intend to compare the analytical contact mechanics models using experimental results and numerical analysis. Nano-indentation experiments are performed on the rubber compound to obtain penetration depth data. A finite element model of a rubber block in contact with a rough surface was developed and validated using the nano-indentation experimental data. Results for different operating conditions obtained from the developed finite element model are compared with analytical model results, and further model improvements are discussed. 
    more » « less